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“The {arm, head, leg, torso} of a man.”

“The {leg, top, support} of a table.”
“The {base, shade, leg} of a 

lamp.”

“The {head, leg, tail, torso} 
of a dog.”

“The {head, leg, tail, torso} 
of a goat.”

“The {body, head, neck} of a 
guitar.”

“The {arm, back, leg, seat} 
of a chair.”

“The {body, handle} 
of a mug.”

“The nose of a gorilla.”

“The {case, handle} of a bag.” “The {blade, handle} of a knife.” “The {engine, fuselage, tail, wing} 
of an airplane.”

“The {feet, head, leg, peak, torso} 
of a bird.”

Figure 1: SATR performs zero-shot 3D shape segmentation via text descriptions by using a zero-shot 2D object detector. It infers 3D
segmentation from multi-view 2D bounding box predictions by exploiting the topological properties of the underlying surface. SATR is
able to segment the mesh from both single and multiple queries and provides accurate predictions even for fine-grained categories.

Abstract

We explore the task of zero-shot semantic segmenta-
tion of 3D shapes by using large-scale off-the-shelf 2D im-
age recognition models. Surprisingly, we find that mod-
ern zero-shot 2D object detectors are better suited for this
task than contemporary text/image similarity predictors or
even zero-shot 2D segmentation networks. Our key finding
is that it is possible to extract accurate 3D segmentation
maps from multi-view bounding box predictions by using
the topological properties of the underlying surface. For
this, we develop the Segmentation Assignment with Topo-
logical Reweighting (SATR) algorithm and evaluate it on
ShapeNetPart and our proposed FAUST benchmarks. SATR
achieves state-of-the-art performance and outperforms a
baseline algorithm by 1.3% and 4% average mIoU on the
FAUST coarse and fine-grained benchmarks, respectively,

and by 5.2% average mIoU on the ShapeNetPart bench-
mark. Our source code and data will be publicly released.
Project webpage: https://samir55.github.io/SATR/.

1. Introduction
Recent developments in vision-language learning gave

rise to many 2D image recognition models with extreme
zero-shot generalization capabilities (e.g., [76, 70, 55, 54,
102]). The key driving force of their high zero-shot per-
formance was their scale [11]: both in terms of the sheer
amount of data [80, 49] and parameters [5, 97] and in
terms of developing the architectures with better scalabil-
ity [85, 31, 59]. However, extending this success to the 3D
domain is hindered by the limited amount of available 3D
data [2, 3], and also the higher computational cost of the
corresponding architectural components [19]. For example,

ar
X

iv
:2

30
4.

04
90

9v
2 

 [
cs

.C
V

] 
 2

1 
A

ug
 2

02
3



the largest openly available 2D segmentation dataset [52]
contains two orders of magnitude more instance annotations
than the largest 3D segmentation one [79]. This forces us to
explore other ways of performing zero-shot recognition in
3D, and in our work, we explore the usage of off-the-shelf
2D models for zero-shot 3D shape segmentation.

Zero-shot 3D shape segmentation is a recently emerged
research area [22] with applications in text-based edit-
ing [75, 4], stylization [65], and interactive visualization.
Given a 3D mesh, the user provides one or several text
descriptions of their regions of interest, and the task is to
categorize each face on the mesh into one of the given de-
scriptions (or “background” class if it does not suit any).
To the best of our knowledge, the only previous work
which explores this task is 3D Highlighter (3DH) [22]. The
method uses an optimization-based search algorithm guided
by CLIP [76] to select the necessary faces for a given text
prompt. While showing strong zero-shot performance, 3DH
has two drawbacks: 1) it struggles in fine-grained segmen-
tation, and 2) it is very sensitive to initialization (see Fig-
ure 2). Moreover, due to its per-query optimization, the
segmentation process is slow, taking up to ≈5-10 minutes
on a recent GPU for a single semantic part.

In our work, we explore modern zero-shot 2D object de-
tectors [55] and segmentors [54, 61] for 3D shape segmen-
tation. Intuitively, 2D segmentation networks are a natural
choice for this task: one can predict the segmentations for
different views, and then directly propagate the predicted
pixel classes onto the corresponding mesh faces. Moreover
and surprisingly, we found that it is possible to achieve sub-
stantially higher performance using a zero-shot 2D object
detector [55]. To do this, we develop Segmentation As-
signment with Topological Reweighting (SATR): a method
that estimates a 3D segmentation map from multi-view 2D
bounding box predictions by using the topological proper-
ties of the underlying 3D surface.

For a given mesh and a text prompt, our method first
uses GLIP [55] to estimate the bounding boxes from dif-
ferent camera views. However, relying exclusively on the
bounding boxes provides only coarse guidance for 3D seg-
mentation and is prone to “leaking” unrelated mesh faces
into the target segment. This motivates us to develop two
techniques to infer and refine the proper segmentation. The
first one, gaussian geodesic reweighting, performs robust
reweighting of the faces based on their geodesic distances
to the potential segment center. The second one, visibility
smoothing, uses a graph kernel, which adjusts the inferred
weights based on the visibility of its neighbors. When com-
bined together, these techniques allow for achieving state-
of-the-art results on zero-shot 3D shape segmentation, es-
pecially for fine-grained queries.

To the best of our knowledge, there are currently no
quantitative benchmarks proposed for 3D mesh segmenta-
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Figure 2: 3DHighlighter [23] is very sensitive to initialization. We
observe that 3DHighlighter produces quite different results when
using different seeds for the same prompt on different 3D shapes.

tion, and all the evaluations are only qualitative [22]. For a
more robust evaluation, we propose one quantitative bench-
mark, which includes coarse and fine-grained mesh seg-
mentation categories. We also evaluate our method on
ShapeNetPart [95] benchmark. Our proposed benchmark
is based on FAUST [9]: a human body dataset consisting
of 100 real human scans. We manually segment 17 regions
on one of the scans and use the shape correspondences pro-
vided by FAUST to propagate them to all the other meshes.
We evaluate our approach along with existing methods
on the proposed benchmarks and show the state-of-the-
art performance of our developed ideas both quantitatively
and qualitatively. Specifically, SATR achieves 82.46%
and 46.01% average mIoU on the coarse and fine-grained
FAUST benchmarks and 31.9% average mIoU scores on the
ShapeNetPart benchmark, outperforming recent methods.
For fine-grained categories, the advantage of our method
is even higher: it surpasses a baseline method by at least
4% higher mIoU on average. We will publicly release our
source code and benchmarks.

2. Related Work
Zero-shot 2D detection and segmentation. Zero-

shot 2D object detection is a fairly established research
area [77, 7]. Early works relied on pre-trained word
embeddings [67, 74] to generalize to unseen categories
(e.g., [77, 7, 25, 94]). With the development of power-
ful text encoders [26] and vision-language multi-modal net-
works [76], the focus shifted towards coupling their rep-
resentation spaces with the representation spaces of object
detectors (e.g., [38, 82]). The latest methods combine
joint text, caption, and/or self-supervision to achieve ex-
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Figure 3: CLIPSeg [61] struggles to identify fine-grained parts
compared to GLIP, which is a detection-based method. We show
the segmented shapes using each of CLIPSeg and GLIP as a back-
bone for our proposed algorithm SATR. The textual prompts con-
sist of all 17 semantic regions.

treme generalization capabilities to unseen categories (e.g,
[55, 99, 87, 102, 88, 78, 64, 35, 30]).

Zero-shot 2D segmentation is a more challenging prob-
lem [102] but had a similar evolutionary path to zero-shot
detection. Early works (e.g., [12, 39, 6, 100, 18, 89, 71, 98])
focused on adapting open-vocabulary word embeddings to
align the semantic representations with the image recogni-
tion model. Later ones (e.g., [27, 63, 54, 61, 29, 36, 62,
93, 92]) developed the mechanisms to adapt rich seman-
tic spaces of large-scale multi-modal neural networks (e.g.,
[76, 70, 43]) for segmentation tasks. Some recent works
show that one can achieve competitive segmentation per-
formance using only text or self-supervision [90, 14, 13,
73, 15]. The current state-of-the-art zero-shot 2D semantic
segmentation models are based on rich multi-modal super-
vision (e.g., [91, 99, 102]). A limiting factor of 2D segmen-
tation is the absence of large-scale segmentation datasets
due to the high annotation cost [96, 56, 51, 49], which hin-
ders generalization. However, we observed that these mod-
els struggle to produce fine-grained segmentation even in
2D, especially for fine-grained categories (see Figure 3) and
develop an algorithm that constructs accurate segmentation
predictions from estimated bounding boxes.

Zero-shot 3D segmentation. Zero-shot 3D segmenta-
tion is a new research topic, and the main focus of the
community was targeted towards point cloud segmenta-
tion [66, 17, 28, 57, 48]. With the rise of Neural Radiance
Fields (NeRFs) [68, 60], there were several methods devel-
oped to model semantic fields(e.g., [101, 86, 32, 50, 33, 84,
83, 40, 1]) by reconstructing ground-truth or estimated se-

mantic annotations from multi-view renderings. By distill-
ing zero-shot 2D segmentation networks (e.g., [54, 14]) into
a NeRF, these methods can perform 3D segmentation of a
volumetric scene (e.g., [47, 81, 37]) and can generalize to
an open-set vocabulary. By fusing representations from ad-
ditional feature extractors of non-textual modalities, Con-
ceptFusion [42] can also support zero-shot visual and audio
queries. In our case, we are interested in shape segmenta-
tion and show that employing a 2D object detector yields
state-of-the-art results.

PartSLIP [57] is concurrent work that performs
zero/few-shot part segmentation of point clouds and, sim-
ilarly to us, also relies on the GLIP [55] model. It clusters a
point cloud, predicts bounding boxes via GLIP for multiple
views, and assigns a score to each cluster depending on the
number of its visible points inside each bounding box. Their
method is designed for point clouds while ours is designed
for meshes.

To the best of our knowledge, the only prior work which
explores zero-shot 3D mesh segmentation is 3D Highlighter
(3DH) [22]. It solves the task by optimizing a probability
field of a point to match a given text prompt encoded with
CLIP [76]. While showing strong generalization capabili-
ties, their approach struggles to provide fine-grained predic-
tions and is very sensitive to initialization (see Figure 2).

3. Method
As input, we assume a 3D shape, represented as a poly-

gon mesh F = {fn}Ni=n of d-sided polygon faces fn ∈
Rd×3, and K semantic text descriptions {tk}Kk=1, provided
by the user. The prompts tk are single nouns or compound
noun phrases consisting of multiple words. Then, the task
of 3D shape segmentation is to extract K non-intersecting
subsets {Fk | Fk ⊆ F}Kk=1 in such a way that the k-th
subset Fk is a part of the mesh surface which semantically
corresponds to the k-th text prompt tk.

In our work, we explore modern powerful 2D vision-
language models to solve this task. The simplest way to
incorporate them would be employing a zero-shot 2D seg-
mentation network, like CLIPSeg [61] or LSeg [54], which
can directly color the mesh given its rendered views. But
as we show in experiments, this leads to suboptimal results
since modern zero-shot 2D segmentors struggle to produce
fine-grained annotations and high-quality segments, while
2D detectors could be adapted for shape segmentation with
surprisingly high precision.

In our work, we consider untextured meshes, but it is
straightforward to apply the method to textured ones.

In this way, our method relies on a zero-shot 2D ob-
ject detector D(x, t) = {(bℓ, pℓ)}Lℓ=1, which takes as in-
put an RGB image x ∈ RH×W×3 of size H × W and
a text prompt t, and outputs L ≥ 0 bounding boxes
bℓ = (xℓ, yℓ, hℓ, wℓ) ∈ R4 with their respective probability
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of a man.”
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Figure 4: An overview of our method. Meshes are rendered from random viewpoints. The resulting images are processed by GLIP, which
detects bounding boxes in the images. Each bounding box corresponds to a prompt (segment). For each bounding box, we compute scores
for triangles inside the bounding box using Gaussian Geodesic Reweighting and Visibility Smoothing. Aggregating the scores yields a
segmented mesh.

scores pℓ ∈ [0, 1]. In our notation, each bounding box bℓ
is defined by its left lower corner coordinate (xℓ, yℓ), width
wℓ, and height hℓ. We choose GLIP [55] as the detector
model due to its state-of-the-art generalization capabilities.

In this section, we first describe a topology-agnostic
baseline framework (denoted as SATR-F) that can leverage
a 2D object detector to segment a meshed 3D surface. Then,
we explain why it is insufficient to infer accurate segmen-
tation predictions (which is also confirmed by the experi-
ments in Tables 1 to 3) due to the coarse selection nature of
the bounding boxes. After that, we develop our Segmenta-
tion Assignment with Topological Reweighting (denoted as
SATR (F+R) or SATR in short) algorithm, which alleviates
this shortcoming by using the topological properties of the
underlying surface.

3.1. Topology-Agnostic Mesh Segmentation

Our topology-agnostic baseline method works the fol-
lowing way. We render the mesh F from M random views
(we use M = 10 in all the experiments, if not stated other-
wise) to obtain RGB images xm. To create the M views, we
generate random camera positions where the elevation and
azimuth angles are sampled using the normal distribution
(µ = 0.7,σ = 4). We use this view generation to be directly
comparable to 3DHighlighter [22]. After that, for each view
xm and for each text prompt tk, we use the detector model
to predict the bounding boxes with their respective confi-
dence scores:

{(bm,k
ℓ , pm,k

ℓ )}Lm,k

ℓ=1 = D(bm, tk). (1)

Then, we use them to construct the initial face weights
matrix W ′

m ∈ [0, 1]N×K for the m-th view. Let Fm,k
ℓ ⊆ F

denote a subset of visible (in the m-th view) faces with at
least one vertex inside bounding box ℓm,k, whose projection
falls inside bm,k

ℓ . Then

Wm[n, k] =

Lm,k∑
ℓ=1

Wℓ
m[n, k, ℓ] (2)

Wℓ
m[n, k, l] =

{
pm,k
ℓ if fn ∈ Fm,k

ℓ

0 otherwise.
(3)

In this way, the score of each face fn for the m-th view
is simply set to the confidence pm,k

ℓ of the corresponding
bounding box(es) it fell into.

The face visibility is determined via the classical Z-
culling algorithm [34]. In this way, if there are no bound-
ing boxes predicted for xm for prompt tk, then Wm[n, k]
equals the zero matrix. The latter happens when the region
of interest is not visible from a given view or when the de-
tector D makes a prediction error.

Next, we take into account the area sizes of each face
projection. If a face occupies a small area inside the bound-
ing box, then it contributed little to the bounding box pre-
diction. The area snm,ℓ of the face fn in the view xm and
bounding box ℓ is computed as the number of pixels which it
occupies. We use the computed areas to re-weight the initial
weights matrix W ′

m and obtain the area-adjusted weights
matrix Wm ∈ RN×K for the m-th view:

Wm[n, k] =

Lm,k∑
ℓ=1

Wℓ
m[n, k, ℓ]× snm,ℓ (4)

To compute the final weights matrix, we first aggregate
the predictions from each view xm by summing the scores



of the un-normalized matrix W̃ ∈ RN×K :

W̃[n, k] =
∑
m

Wm[n, k], (5)

and then normalize it by dividing each column by its maxi-
mum value to obtain our final weights matrix W ∈ RN×K :

W[n, k] = W̃[n, k]/max
k

W̃[n, k]. (6)

The above procedure constitutes our baseline method of
adapting bounding box predictions for 3D shape segmenta-
tion. As illustrated in Figure 8, its disadvantage is “segmen-
tation leaking”: some semantically unrelated parts of the
surface get incorrectly attributed to a given text prompt t,
because they often fall into predicted bounding boxes from
multiple views. To alleviate this issue, we develop a more
careful score assignment algorithm that uses the topological
properties of the surface, thus allowing us to obtain accurate
3D shape segmentation predictions from a 2D detector.

3.2. Gaussian Geodesic Reweighting

Bounding box estimates give only coarse estimates about
the semantic region being queried, and we found that us-
ing the surface topology allows localizing it with substan-
tially better precision. For this, we construct a method that
utilizes geodesic distances between mesh faces, i.e., path
lengths from one face to another along the surface, instead
of their direct distances in Euclidian space.

Consider the following example of segmenting a human
palm. When the hand is in a resting state, the palm lies
close to the waistline in Euclidean space (as illustrated in
Figure 5). Then, a simple topology-agnostic method would
lead to the waistline leaking into the segmentation predic-
tion. At the same time, one can observe that the predicted
bounding boxes are always centered around the palm, and
the waistline is far away from it in terms of the geodesic dis-
tance. In this way, discarding such outlying polygons yields
a precise segmentation of the required region. And this is
the main intuition of our developed algorithm.

As a first step, for each predicted bounding box bm,k
ℓ ,

we estimate its central face, which we call the capital face
gm,k
ℓ ∈ F . It is computed by taking the (area-weighted)

average of all the vertices from all the faces inside Fm,k
ℓ ,

projecting this average point onto F and taking the face on
which the projection lies. After that, we compute a vector of
geodesic distances dm,k

ℓ ∈ RN
+ from the capital face gm,k

ℓ

to every other face f ∈ Fm,k
ℓ :

dm,k
ℓ [n] =

{
gdist(gm,k

ℓ ,fn) if fn ∈ Fm,k
ℓ

0 otherwise
(7)

where gdist(·, ·) denotes the geodesic length between two
faces computed on the mesh F using the Heat method [21].

It feels natural to use those geodesic distances directly
to reweight the original weight matrix W . However, this
leads to sub-optimal results for two reasons: 1) there are
natural errors in selecting the capital face, which would bias
reweighting towards incorrect regions; and 2) as we show
in Figure 5, it is difficult to tune the decay rate for such
reweighting. Instead, we propose Gaussian reweighting and
demonstrate that it is more robust and accurate in practice.
It works the following way.

First, we fit a Gaussian distribution over the distances
and compute the corresponding probability density values
for each face given its geodesic distance from the capital
face:

rm,k
ℓ ≜ {N (d;µm,k

ℓ , (σm,k
ℓ )2) | d ∈ dm,k

ℓ }, (8)

where µm,k
ℓ , σm,k

ℓ denote the mean and standard deviation
of the distances dm,k

ℓ . This formulation nudges the weights
away from the capital and works like adaptive regulariza-
tion. If there are inaccuracies in the capital face selection,
then it will have less influence on the segmentation quality.
We aggregate the weights from multiple views into a sin-
gle vector of scores rm,k ∈ RN

+ and reweigh the original
weight matrix Wm for the m-th view to obtain the weight
matrix Wg

m with Gaussian geodesic reweighting:

Wg
m[n, k] =

Lm,k∑
ℓ=1

Wℓ
m[n, k, ℓ]× snm,ℓ × rm,k

ℓ . (9)

After that, we compute the final weight matrix Wg ∈
RN×K for each face fn ∈ F in a similar manner to W
by taking the summing over Wg

m from different views. We
find that not normalizing the weight matrix whenever the
Gaussian Geodesic Reweighting is used yields better per-
formance than applying normalization.

This procedure takes into account the topological struc-
ture of the mesh surface, which allows for obtaining more
accurate segmentation performance, as can be seen from Ta-
bles 1 and 2 and Figure 7. However, it has one drawback: it
pushes the weights away from the capital face, which might
decrease the performance. To compensate for this, we de-
velop the technique of visibility smoothing, which we de-
scribe next.

3.3. Visibility Smoothing

The score matrix Wg with Gaussian geodesic reweight-
ing might allocate too little weight on the central faces
around the capital face gm,k

ℓ , which happens for regions
with a large average distance between the faces. To com-
pensate for this, we propose visibility smoothing. It works
independently in the following way.

For each visible face f ∈ Fm,k
ℓ , we compute its lo-

cal neighborhood, where the neighbors are determined via
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Figure 5: Gaussian Geodesic Weights can help reduce the scores
for triangles inside a detected bounding box that do not belong to
the segment of the corresponding text prompt.

mesh connectivity: a face g is a neighbor of face f if they
share at least one vertex. For this, we use a q-rank neigh-
borhood Nq(f) (we use q = 5 in all the experiments unless
stated otherwise), which is constructed the following way.
For face fn ∈ F , we take the face g ∈ F if there exists a
path on a graph between f and g of at most q other vertices.

After that, we compute the neighborhood visibility
scores vector vm,k

ℓ ∈ [0, 1]N for each face fn ∈ F by com-
puting the ratio between visible faces in its neighborhood
and the overall neighborhood size:

vm,k
ℓ [n] =

|Nq(fn) ∩ Fm,k
ℓ |

|Nq(fn)|
. (10)

Similarly to geodesic weighting, we aggregate the neigh-
borhood visibility scores vm,k

ℓ [n] across the bounding
boxes into vm,k[n] ∈ [0, 1]N via element-wise vector sum-
mation:

vm,k[n] =

L∑
ℓ=1

vm,k
ℓ [n] (11)

This gives us our final per-view score matrix W∗
m ∈ RN×K

+ :

W∗
m[n, k] =

Lm,k∑
ℓ=1

Wℓ
m[n, k, ℓ]× snm,ℓ × rm,k

ℓ × vm,k[n].

(12)

Again, we aggregate our multi-view scores W∗
m[n] into the

final weights matrix W∗[n] by taking the maximum across
the views.

We call the above technique visibility smoothing since
it smoothes face weights according to their neighborhood
visibility and can be seen as a simple convolutional kernel
over the graph. It allows for repairing the weights in the
central part of the visible surface region without damaging
the rest of the faces. This consequently leads to a noticeable
improvement in the scores, as we report in Tables 1 and 5.

The pseudo-code of our algorithm is provided in Algo-
rithm 1 in Appx B, together with additional implementation
details. Also, note that the source code of our method will
be publicly released.

4. Experiments

Figure 6: Proposed FAUST Benchmark. It contains 100 human
shapes with both coarse and fine-grained annotations.

4.1. Experimental Setup

Datasets and splits. We evaluate the zero-shot perfor-
mance on our proposed FAUST [9] benchmark and on the
ShapeNetPart [95] dataset. For the FAUST dataset, we use
all of the 100 scans available. We manually collected the
coarse and fine-grained annotations in the following way.
First, we manually annotate the registered mesh of one hu-
man scan as shown in Figure 6 using vertex paint in Blender
[8]. Since we have access to the FAUST mesh correspon-
dences, we are able to transfer our annotations to all other
scans. We then re-mesh each human scan independently
to contain around 20K triangular faces. To generate anno-
tations for these re-meshed scans, we assign the label of
each vertex to the label of the nearest vertex before remesh-
ing. For the ShapeNetPart dataset [95], it contains 16 ob-
ject categories and 50 annotated parts for shapes from the
ShapeNet [16] dataset. We use all of the 2460 labeled
shapes of the ShapeNetPart dataset provided by [44], where
the point labels are transferred to mesh polygon labels via a



Method Backbone mIoU arm
belly

button
chin ear elbow eye foot

fore-
head

hand head knee leg mouth neck nose
shou-
lder

torso

3DH [23] CLIP [76] 3.89 18.39 1.99 0.46 0.72 0.08 0.0 20.81 0.70 0.02 3.49 6.17 3.91 0.05 1.94 0.07 0.04 7.28

SATR-F
CLIPSeg 10.88 11.51 0.10 0.30 0.0 0.03 0.0 03.28 0.0 25.80 39.99 0.07 50.52 0.0 0.05 0.0 5.11 48.24
GLIP 41.96 45.22 26.30 37.68 41.67 24.93 25.95 53.94 41.63 68.22 42.56 32.69 59.73 27.59 41.78 50.57 33.00 59.83

SATR GLIP 46.01 50.51 29.41 27.74 47.45 26.80 18.90 81.99 38.11 81.45 51.11 33.34 65.22 27.29 41.95 57.60 38.94 64.35

Table 1: Performance of SATR on the fine-grained semantic segmentation on FAUST dataset.

Backbone mIoU arm head leg torso

3DH [23] CLIP [76] 16.50 28.60 14.20 14.90 8.20

SATR-F
LSeg [54] 6.50 26.00 0.0 0.0 0.0
CLIPSeg [61] 60.34 46.55 58.01 76.22 59.80
GLIP [55] 81.16 82.01 88.17 86.54 67.92

SATR GLIP [55] 82.46 85.92 90.56 85.75 67.60

Table 2: Performance of SATR on the coarse-grained semantic segmentation on FAUST dataset.

nearest neighbors approach combined with graph cuts. The
meshes in ShapeNetPart have triangular faces that are very
large, covering a large portion of the mesh surface. For
this reason, during model inference, we provide re-meshed
ShapeNetPart shapes as input, where each mesh contains at
most 30K triangular faces. We use the Isotropic Explicit
Remeshing algorithm [41] provided by MeshLab [20] to
do the re-meshing. During the evaluation, we transferred
the predicted face labels back to the original ShapeNetPart
shapes. Figure 1 includes examples from the TextANIMAR
[53], Objaverse [24], and TOSCA [10] datasets.

Metrics. We use the semantic segmentation mIoU as
described in [69]. We first calculate the mIoU for each part
category across all the test shapes and then compute for each
object category the average of the part mIoU.

4.2. Implementation Details

We use a single Nvidia V100 GPU for each experiment.
We use the Nvidia Kaolin library [34] written in PyTorch
[72] for rendering in all of our experiments. To ensure fair-
ness, we use the same views in all of our GLIP-based model
experiments. As a pre-processing step, we center the input
mesh around the origin and normalize it inside a unit sphere.
For rendering, we use a resolution of 1024 × 1024 and a
black background color.

4.3. Zero-Shot Semantic Segmentation

4.3.1 FAUST Benchmark

We compare our method with 3DHighlighter [22] and
CLIPSeg [61]. To obtain semantic segmentation results
from 3DHighlighter, we run the optimization separately to
get a highlighted mesh for each of the input semantic re-
gions. If a face were highlighted for different semantic re-

gions, its predicted label would be the semantic class with
the highest CLIP similarity score. To obtain semantic seg-
mentation results from CLIPSeg, we generate a segmenta-
tion mask for each rendered view for each semantic label,
and we aggregate the segmentation scores for each face and
assign the most predicted label for each face.

In Table 2, we report the overall average mIoU and
the mIoU for each semantic part on our proposed FAUST
benchmark. SATR significantly outperforms 3DHighlighter
on the coarse-grained parts. As shown in Figure 7, our
method SATR outperforms 3DHighlighter and CLIPSeg on
all of the four semantic parts (leg, arm, head, and torso) by
an overall average mIoU of 82.46%. In addition, we show
that our proposed components(SATR) help improve the re-
sults upon our GLIP-based baseline (SATR-Baseline). In
Figure 7, we show the qualitative results of our method, and
we compare it to 3DHighlighter. In addition, in Table 1,
our method SATR overall outperforms 3DHighlighter with
a margin of 42.12% in the fine-grained semantic segmen-
tation. In Figure 7, we show the results of SATR on fine-
grained segmentation compared to the ground truth.

4.3.2 ShapeNetPart Dataset

In Table 3, SATR consistently outperforms 3DHighlighter
in every shape category by a large margin. The results sug-
gest that our proposed method SATR is applicable not only
to human shapes but can also perform well in a wide range
of categories. In Figure 7, we compare SATR and 3DHigh-
lighter. The main challenge is that 3DHighlighter only
works with the right random initialization, which doesn’t
happen too often.



3D
H

SA
T

R
-F

SA
T

R

{arm, head, leg, torso} {body, handle} {case, handle} {blade, handle} {base, shade, tube}

Figure 7: Qualitative results and comparison between 3DHighlighter, SATR-F, and SATR

Method Backbone mIoU
air-

plane
bag cap car chair

ear-
phone

guitar knife lamp laptop
motor-
bike

mug pistol rocket
skate-
board

table

3DH [23] CLIP [76] 5.70 5.81 2.05 2.85 2.88 15.53 9.55 0.86 1.58 13.21 1.78 5.57 0.65 1.36 10.36 6.44 10.77
SATR-F GLIP [55] 26.67 41.73 26.60 22.96 22.01 26.61 14.95 43.55 30.79 31.16 30.05 12.40 31.55 19.63 15.55 34.49 22.70
SATR GLIP [55] 31.90 38.46 44.56 24.01 19.62 33.16 16.90 40.22 45.92 30.22 37.79 15.70 52.31 20.87 28.41 30.77 31.41

Table 3: Performance of SATR on the ShapeNetPart dataset.

4.4. Ablation Studies

Effectiveness of the proposed components. We ablate
the effectiveness of our proposed components for FAUST
coarse and fine-grained benchmarks in Tables 5 and 7.
Using both Gaussian geodesic re-weighting and visibility
smoothing gave the best performance in both the coarse and

fine-grained FAUST benchmarks. In addition, each compo-
nent is effective on its own and performs better than SATR-
Baseline. The results suggest that both components work in
a complementary fashion.

Different reweighting methods. We compare using dif-
ferent re-weighting methods as shown in Table 6. As dis-



Method Backbone(s) Coarse-Grained
mIoU

Fine-Grained
mIoU

SATR-F
GLIP [55] 81.16 41.96

GLIP-SAM [45] 78.59 27.52
DINO-SAM [14] 80.42 21.90

SATR GLIP [55] 82.46 46.01

Table 4: mIoU comparison between SATR and SATR-F with re-
cent SAM-based [46] backbones.

Gaussian Geod-
esic Reweighting

Visibility
Smoothing

mIoU arm head leg torso

81.16 82.01 88.17 86.54 67.92
✓ 81.69 82.68 88.61 86.85 68.61

✓ 82.39 85.73 90.61 85.81 67.41
✓ ✓ 82.46 85.92 90.56 85.75 67.60

Table 5: Ablation to show the effectiveness of our proposed com-
ponents for the coarse-grained FAUST benchmark.

Re-weighting Method
Coarse-Grained

mIoU
Fine-Grained

mIoU

Max Geodesic 82.41 44.57
Softmax Geodesic 81.69 43.34
Gaussian Geodesic (ours) 82.46 46.01

Table 6: Ablation on using different re-weighting methods. Our
proposed Gaussian Geodesic Re-weighting method outperforms
other normalization methods. This shows its effectiveness in the
fine-grained and more difficult semantic segmentation task.

cussed earlier in Section 3.2, we compute the geodesic dis-
tances between every visible face in a predicted bounding
box and the capital face. To compute the weights for ev-
ery visible face, we try re-weighting by doing the following
wi = (1−disti/(maxdist+ϵ)). We also try computing the
weights by normalizing the distance with a softmax func-
tion. Our proposed Gaussian geodesic re-weighting method
outperforms other methods, especially in the fine-grained
benchmark with a very large margin, showing that it is ro-
bust when the capital face is miscalculated.

Comparison using recent 2D segmentation models. Re-
cent foundation models for 2D semantic segmentation show
promising results for zero-shot 2D semantic segmentation.
For instance, SAM [46] can be combined with power-
ful 2D object detectors (like GLIP [55] and Grounding-
DINO[58]) for text-based semantic segmentation. In Ta-
ble 4, we compare our proposed method with DINO-SAM
and GLIP-SAM based segmentation methods. Our pro-
posed object detector-based method still exhibits strong per-
formance among recent works, especially in the FAUST
fine-grained benchmark.

SATR-F SATR

Figure 8: Segmentation leaking problem. Some semantically un-
related parts of the surface get incorrectly attributed to a given tex-
tual prompt because they often fall into predicted bounding boxes
from multiple views.

Gaussian Geodesic
Reweighting

Visibility
Smoothing

mIoU

41.96
✓ 43.35

✓ 45.56
✓ ✓ 46.01

Table 7: Ablation on trying all the possible combinations of our
proposed components for the fine-grained FAUST benchmark.

5. Conclusion

In our work, we explored the application of modern zero-
shot 2D vision-language models for zero-shot semantic seg-
mentation of 3D shapes. We showed that modern 2D object
detectors are better suited for this task than text-image sim-
ilarity or segmentation models, and developed a topology-
aware algorithm to extract 3D segmentation mapping from
2D multi-view bounding box predictions. We proposed
the first benchmarks for this area. We compared to previ-
ous and selected concurrent work qualitatively and quanti-
tatively and observed a large improvement when using our
method. In future work, we would like to combine differ-
ent types of language models and investigate in what way
the names of the segments themselves can be proposed by a
language model. We discuss the limitations of our approach
in Appx A.
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A. Limitations
In this section, we discuss the limitations of our ap-

proach. First, there is no formal guarantee that the random
view sampling algorithm covers each triangle. We mainly
used this choice to be compatible with previous work. Al-
ternatively, one could devise a greedy view selection algo-
rithm that ensures each triangle is selected once. Another
approach would be to use a set of uniformly distributed
viewpoints that are fixed for the complete dataset. Second,
we are not able to test other types of large language models
because the latest versions are not publicly available [99].
Third, GLIP prediction is not perfect. For example, it can
incorrectly detect parts that are semantically different but
still look similar (for instance, the front and the backpack
of an astronaut, see Figure 1).

B. SATR Pseudocode
In Algorithm 1, we show the pseudocode of our proposed

method (SATR).

C. Additional Ablation Studies
C.1. Changing the Number of Views

We investigate the effect of changing the number of input
rendered views on our proposed method SATR. In Table 3,
we report the mIoU performance on both the coarse and the
fine-grained FAUST benchmarks. Generally, increasing the
number of views results in better segmentation performance
in both benchmarks. However, the computation time in-
creases, and there are diminishing returns for adding a large
number of views.

C.2. Camera View-port Sampling Approach

We ablate using different sampling approaches for
choosing the camera view-ports. In Table 1, we compare
between sampling camera view-ports using the approach
described in [22] and doing uniform viewpoint sampling
using a range of equidistant elevation and azimuth angles.
We report the mIoU performance on both the coarse and
the fine-grained FAUST benchmarks. We observe that sam-
pling from a normal distribution (µ = 3.14, σ = 4) results
in better performance in both benchmarks. The reason be-
hind this is having more control over the range of the eleva-
tion and azimuth angles can produce better views that cover
most of the input mesh and avoid sampling views where a
lot of occlusions may happen. More complex view selection
could be future work.

C.3. Coloring The Input Mesh

We ablate the effect of changing the color of the input
mesh on the performance of SATR. We run three experi-
ments by using four different colors for the input meshes;

Algorithm 1: Segmentation Assignment with
Topological Reweighting (SATR) in highlevel
pseudocode.

Input : Zero-shot 2D object detector D(x, t),
where x is an image and t is a text prompt.

Input : Shape surface as a mesh of faces F .
Input : Set of textual prompts T representing

semantic regions/classes.
Input : Number of views Nviews

Input : The q-ring neighborhood q.
Output: The predicted semantic label of each face

of the input mesh F .
# Initialize face scores
S = zeros(F .faces.length, T .length),
# Compute the pair-wise geodesic distance between
every pair of faces
G = computeFacePairwiseDistance(F)
# Find the q-ring neighborhood for all the faces of
the mesh
Q = getFaceQNeighbors(F , q)
# Render the mesh
V , Pixel2Face = renderMesh(F , Nviews)
for v in V do

for t in T do
# Detect 2D Bounding Boxes for the given t

prompt
Bv,t = predictBoxes(v, t)
for bt,v in Bv,t do

# Get the visible faces inside bt,v
ft,v = getVisibleFaces(bt,v , F ,

Pixel2Face)
# Compute capital face
c = computeCapitalFace(ft,v , F)
# Compute frequency of the visible faces
wfreq = faceFreq(ft,v , Pixel2Face)
# Compute Gaussian Geodesic weights
wgeo = faceGeodesicWeights(c, ft,v)
# Compute visibility smoothing weights
wvis = faceVisibilityWeights(ft,v , Q)
# Update face scores
Sft,v,it += wgeo * wvis * wfreq

end
end

end
face label = argMax(S, axis=1)
Return face label;

grey, red, blue, and natural skin color. As shown in Table 2,
we find that using the gray color results in the best perfor-
mance compared to other colors.



Coarse-Grained
mIoU

Fine-Grained
mIoU

Uniform Sampling 81.58 43.76
Sampling using Normal Distribution [23] 82.46 46.01

Table 1: Ablation on using different view-port sampling methods
in our proposed method SATR on FAUST coarse and fine-grained
benchmarks. (with ten rendered views as input).

The backpack of an astronaut

Figure 1: GLIP model can incorrectly detect semantically different
parts that look similar. Since the parts of the astronaut suit look
similar, GLIP mistakenly predicts the astronaut’s chest as a part of
the backpack and doesn’t predict a tighter bounding box around
the backpack.

Coarse-Grained
mIoU

Fine-Grained
mIoU

Red 80.62 40.67
Blue 81.35 42.58
Skin color 82.22 44.58
Gray 82.46 46.01

Table 2: Ablation on changing the vertex colors of the input 3D
models to our proposed method SATR on FAUST coarse and fine-
grained benchmarks. (with ten rendered views as input).

C.4. Summation of Reweighting Factors

We replace the multiplication of both of the Gaussian
Geodesic and Visiblity Smoothing reweighting factors as
shown in Equation (12) with addition:

# Views
Coarse-Grained

mIoU
Fine-Grained

mIoU

5 53.99 25.96
10 82.46 24.3
15 80.48 43.40
20 82.41 45.20
30 84.06 47.87
40 84.26 47.67

Table 3: Ablation on using a different number of rendered views
as input to our proposed method SATR on FAUST coarse and fine-
grained benchmarks.

Backbone Coarse-mIoU Fine-mIoU

SATR-F GLIP [55] 81.16 41.96
SATR (add) GLIP [55] 82.75 44.90
SATR (mul) GLIP [55] 82.46 46.01

Table 4: Ablation on different ways of combining the reweighting
factors.

W∗
m[n, k] =

Lm,k∑
ℓ=1

Wℓ
m[n, k, ℓ]× snm,ℓ × (rm,k

ℓ + vm,k[n]).

(13)
We show the mIoU performance on both FAUST coarse

and fine-grained benchmarks in Table 4. The addition of
the reweighting factors gave slight increase in performance
for the coarse benchmark while perform significantly worse
than multiplying the reweighting factors.


